Roll No.:....

322454(22)

B. E. (Fourth Semester) Examination, April-May 2020

(New Scheme)

una di meli und de (CSE Branch) al mario y mili

di wente lang transio humung etgi

COMPUTER SYSTEMS ARCHITECTURE

Time Allowed: Three hours

Maximum Marks: 80

Minimum Pass Marks : 28

Note: Attempt all questions. Each question have four parts. Part (a) of each question is compulsory and carry 2 marks. Attempt any two parts from (b), (c) and (d) of each question.

Unit-I

1. (a) What is computer system architecture?

Z

ı	2	

(b)	An instruction is stored at location 300 with its
	address field at location 301. The address field
	has the value 400, a processor register R1 contain
	the number 200. Evaluate effective address if the
	addressing modes of the instruction are (i) direct;
	(ii) immediate; (iii) relative; (iv) register indirect.

(c) Analyze the various buses used in bus structure and express the importance of all buses.

7

7

(d) Write the differences between Hardwired and Micro programmed control unit. Draw the block diagram of both.

Unit-I

- 2. (a) Explain the array multiplication of positive binary operands in brief.
 - (b) Multiply 2 numbers (-9) and (-13) with the help of both algorithm.
 - (c) Explain IEEE floating point number representation and its operation for 32 bits.
 - (d) Evaluate the following by using Restoring Division:

 Divisor is 11 and Dividend is 1000

[3]

Unit-III

- (a) Explain multimodule memory and interleaving.(b) Explain the working of associative memory with block diagram and derive the expression for match logic.
 - (c) A two way set associative cache memory uses blocks of four words. The cache can accommodate a total of 2048 words from main memory. The main memory size is 128 K X 32:
 - (i) Formulate all pertinent information required to construct the cache memory.
 - (ii) What is the size of cache memory?
 - (d) Explain virtual memory in details.

Unit-IV

- **4.** (a) Differentiate between synchronous and asynchronous data transfer.
 - (b) Define priority interrupt. Explain daisy chaining priority interrupt with a block diagram.
 - (c) What is direct memory access technique? Explain the rate of DMA controller with diagram.

322454(22)

PTO

7

2

7

322454(22)

7

(d)	What is address space? Explain isolated v/s	
	memory mapped I/O.	7
	Unit-V	
(a)	Specify a pipeline configuration to carry out arith-	
	metic operation $(A_i + B_i) (C_i + D_i)$.	2
(b)	Consider the execution of the program of 15000	
- 211	instructions a linear pipeline processor with a clock	
	rate of 25 MHz. Assume that the instruction pipe-	
	line has 5 stages and that one instruction is issued	
	per clock cycle. Calculate (i) speed up factor (ii)	
	efficiency (iii) throughout.	7
(c)	Draw and explain flow chart and timing diagram	
	for the four segment instruction pipeline.	7
(d)	Write short notes on	7
-1	(i) Vector processor	
	(ii) Array processor	
	(b) Dellan proofs in aring a spline days clade	
	priority interrup water block diagram.	

5.